General Hermite and Laguerre two-dimensional polynomials

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2000 J. Phys. A: Math. Gen. 333531
(http://iopscience.iop.org/0305-4470/33/17/501)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.118
The article was downloaded on 02/06/2010 at 08:06

Please note that terms and conditions apply.

Corrigenda

General Hermite and Laguerre two-dimensional polynomials

A Wünsche 2000 J. Phys. A: Math. Gen. 33 1603-1629
By comparing formula (5.5) with formula (A.4) in appendix A, a difference in the order of indices $V_{x y}^{\prime}$ in (5.5) with the corresponding V_{21}^{\prime} in (A.4) was overlooked. This has an influence on the orthogonality and completeness relations of the Hermite 2D functions which possess the following correct form with an additional transposition (notation ${ }^{\top}$) of U^{-1} :

$$
\begin{aligned}
& \int \mathrm{d} x \wedge \mathrm{~d} y h_{k, l}\left(\left(U^{-1}\right)^{\mathrm{\top}} ; x, y\right) h_{m, n}(U ; x, y)=\delta_{k, m} \delta_{l, n} \\
& \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} h_{m, n}(U ; x, y) h_{m, n}\left(\left(U^{-1}\right)^{\mathrm{\top}} ; x^{\prime}, y^{\prime}\right)=\delta\left(x-x^{\prime}\right) \delta\left(y-y^{\prime}\right)
\end{aligned}
$$

and analogously for the Laguerre 2D functions by substitution $U^{-1} \rightarrow\left(U^{-1}\right)^{\top}$, where $\left(U^{-1}\right)^{\top}=\left(U^{\top}\right)^{-1}$ is the contragredient matrix to U. In order to get full compatibility with appendix A, one may substitute in section 5 matrix V by its transposed V^{\top}; i.e. $V \rightarrow V^{\top}, V_{x y} \leftrightarrow V_{y x}$ and $V_{z z^{*}} \leftrightarrow V_{z^{*} z}$.

